Без рубрики

Что такое дребезг контактов и как его устранить?

В этой статье мы рассмотрим такое распространенное и вредное явление как дребезг контактов. Ознакомимся с основными причинами возникновения дребезга. Изучим основные методы аппаратного и программного устранения данного явления.

Содержание

  1. Что такое дребезг контактов?
  2. Причины возникновения
  3. Вредное влияние дребезга
  4. Способы устранения и подавления дребезга
  5. Аппаратный способ
  6. Установки триггеров
  7. Использование герконов
  8. Программный метод
  9. Заключение
  10. Видео в развитие темы

Что такое дребезг контактов?

В конструкциях всех электромеханических устройств, предназначенных для замыкания-размыкания цепей, существует одна или несколько контактных пар. С их помощью происходит коммутация соответствующих электрических компонентов. Существенным недостатком электромеханических контактов являются произвольные неконтролируемые многократные повторы коммутации, вследствие упругости элементов контактной системы. Это явление получило название – дребезг контактов, а борьбу с ним ведут практически с того момента когда появились первые элементы автоматизированных систем.

Давайте разберёмся, какие физические факторы вызывают дребезжание и почему при этом возникают негативные последствия.

Причины возникновения

При взаимодействии упругих тел возникает деформация. Сила упругости возвращает первоначальную форму деформированного предмета, в результате чего он получает некий импульс движения. Иллюстрацией может служить металлический шарик, падающий на стальную плиту. Сила упругости возвращает его в положение, близкое к изначальному, откуда шарик снова падает на плиту и процесс повторяется. Происходит колебательное движение с затухающей амплитудой.

Аналогичные колебания происходят при соприкосновении твердых контактов, с той лишь разницей, что вместо силы тяжести на них действует упругость пружины или пластины. Амплитуда колебаний подвижных контактов, естественно, очень незначительная, но её вполне достаточно для провоцирования серии процессов кратковременного размыкания цепи. Результатом колебаний являются импульсы, в промежутке после нажатия и следующие сразу за отпусканием кнопки.

Разницу между идеальной и реальной формой импульсов видно на рис. 1.

 Сравнение идеального импульса с реальным
Рисунок 1. Сравнение идеального импульса с реальным

Как видно из рисунка идеальным является сигнал с одним прямоугольным импульсом. На практике всё выглядит иначе. Дребезг изменяет осциллограмму сигнала. Определённые коррективы вносит искрение. Форма импульсов на рисунке сильно приукрашена. В реальной ситуации осциллограмма выглядит более потрёпанной.

Частота и количество касаний контактов зависит:

  • от свойств компонентов коммутирующего узла;
  • уровня напряжения на обмотках реле;
  • от упругости пружины и некоторых других факторов.

Дребезг наблюдается и во время размыкания контактов. Обычно при механическом размыкании контакты меньше дребезжат.

На рисунке 2 наглядно изображена осциллограмма напряжения в результате коммутации электрического тока вследствие нажатия на кнопку.

Осциллограмма коммутационного тока
Рисунок 2. Осциллограмма коммутационного тока

На осциллограмме видно серии импульсов, характеризующих процесс дребезга.

Вредное влияние дребезга

Чтобы понять негативные последствия от дребезга, рассмотрим процессы, возникающие при коммутации слабых и мощных электрических цепей. Как только расстояние между контактами оказывается достаточным для зажигания электрической дуги, между ними возникает разряд, который разрушает соприкасающиеся поверхности. Искрение, возникающее при механическом контакте, обычно имеет небольшую разрушающую силу. Но электрическая дуга большой мощности вызывает повышенный износ.

Слабое искрение также приводит к явлению износа контактов, хотя оно не такое разрушительное как при зажигании мощной дуги. В ряде случаев таким износом можно пренебречь. Например, для бытовых выключателей освещения проблемой дребезга никто не занимается, так как он почти не влияет на работу осветительных приборов. Во всяком случае, потребители не замечают последствий такого явления.

Однако повышенный износ контактов не единственная (а во многих случаях даже не самая главная) проблема, с которой сталкиваются электротехники. Частые переключения, вызванные эффектом дребезга – враг номер один для цифровых входов. Схемы различных электронных устройств очень чувствительны к кратковременным частым переключениям токов.

Цифровая электроника воспринимает их за чередование сигналов, состоящих из нулей и единиц. Устройствами считываются ложные коды, вызванные дребезгом при нажатиях кнопки, что приводит к сбоям в работе. Поэтому устранения дребезга является важнейшей задачей, которую приходится решать многим конструкторам и схемотехникам.

Способы устранения и подавления дребезга

Без конструктивного изменения контактной системы устранить либо подавить дребезг принципиально невозможно. Примером таких конструктивных изменения можно наблюдать в узлах галетных переключателей или в кнопках типа П2К. В упомянутых конструкциях дребезг практически отсутствует. Нет его и у механического переключателя ползункового типа.

Аппаратный способ

С целью подавления дребезга в системах слаботочных электромеханических ключей прибегают к смачиванию ртутью контактов, которые помещают в изолирующие колбы. Жидкое состояние ртути частично гасит упругие силы, вызывающие дребезг, а также образует токопроводящие перемычки, не позволяющие разрывать электрическую цепь при соприкосновении контактов.

Для снижения уровня коммутационного износа в различных реле и силовых выключателях применяют искрогасящие цепочки:

  • шунтирующие RC-цепи;
  • варисторы, препятствующие скачкообразному изменению напряжения;
  • обратные диоды, подавляющие напряжения самоиндукции;
  • стабилитроны;
  • комбинированные схемы (варистор +RC-цепь).

Эти цепочки помогают устранить дребезг путём выравнивания скачкообразных характеристик тока. Их подключают параллельно нагрузке либо к контактам реле. Существуют также схемы, в которых искрогасящие цепи подключаются одновременно и к нагрузке и к реле.

Схемы цепей изображены на рис. 3.

Схемы искрогасящих цепей
Рисунок 3. Схемы искрогасящих цепей

У каждого способа есть свои преимущества и недостатки. В зависимости от того какого результата необходимо достигнуть, применяют ту или иную схему.

Управление приборами чувствительными к дребезгу осуществляется через ФНЧ (например, через RC-цепочку). Обладая электрической емкостью, конденсатор забирает часть энергии в момент касания контактов. После разрыва цепи вследствие дребезга накопленная энергия возвращается. Таким образом, происходит сглаживание амплитуды колебаний.

Установки триггеров

Ещё один способ борьбы с дребезгом состоит в использовании специальных электронных схем, включающих rs-триггеры.

Роль триггеров заключается в преобразовании входного аналогового сигнала в цифровой и инверсии (переворачивания) логических уровней. Наглядно инверсию объясняет схема на рисунке 4.

Наглядная схема инверсии сигнала
Рис. 4. Наглядная схема инверсии сигнала

Устройство учитывает только части сигналов, превосходящие заданные пороговые значения, выдавая логические нули и единицы на выходе. Каждый раз восходящий или нисходящий сигнал переключает триггер, когда он проходит верхнее или нижнее пороговое значение. Проще говоря, провалы напряжения компенсируются инвертированными импульсами триггеров.

Простая схема с триггером показана на рисунке 5.

Наглядная схема подключения rs-триггеров
Рис. 5. Наглядная схема подключения rs-триггеров

Промежутки между пороговыми значениями называются гистерезисом. Форма таких импульсов используется для шумоподавления во время переключения логических сигналов. Сигнал от контакта поступает на схему, имеющую передаточную статическую характеристику в виде петли гистерезиса (триггер Шмидта). Только после этого сигнал с выходов триггера подаётся на вход цифрового устройства для тактирования.

Использование герконов

Выше упоминалось, что наличие ртути на контактах подавляет дребезг. Но общеизвестно, что пары этого жидкого металла очень ядовиты. Использовать их в открытых конструкциях, например в тактовых кнопках, небезопасно. Но контакты можно поместить в герметическую колбу, что позволяет применять ртуть. Такие конструкции называются герконами.

Управление контактами герконов осуществляется внешним магнитным полем. Для этого можно использовать постоянные магниты или электромагнитную индукцию. Устройства могут использоваться в маломощных цепях. Они имеют длительный срок службы, так как контакты в них не изнашиваются.

Программный метод

Для устранения дребезгов в различных вычислительных машинах используют программную обработку сигналов. При этом для тактирования берётся сигнал не непосредственно от контакта, а связанная с ним однобитная булевая переменная, сформированная специальной программой:

  • путём временной задержки сигнала, на период вероятного дребезга контактов;
  • методом многократного считывания состояния контактов, на заданном временном интервале. Программа считает цепь замкнутой, если на этом промежутке времени наступает период устойчивого замыкания контакта;
  • используя алгоритм подсчёта, при котором учитывается количество совпадающих значений сигналов замкнутости в определённый промежуток времени (в пределах от 10 до 100 мкс). Если программой будет замечено заданное число совпадений состояния замкнутости, она посчитает контакт устойчиво замкнутым и пропустит сигнал.

Сигнал, полученный программным способом, довольно надёжный и устойчивый. К недостаткам такой схемы подавления дребезга можно отнести разве что небольшую задержку сигнала, которая не превышает 0,1 с. Этот промежуток времени настолько мал, что им можно пренебречь во многих случаях. Обычно палец человека задерживается на клавише до момента отпускания кнопки свыше 0,2 с.

Программированные устройства получают сигналы управления с кнопок и передают идеальные импульсы на устройства-потребители, работающие на цифровых микросхемах. В результате отсечения программой сигналов дребезга, на входы микросхемы поступают только качественные импульсы. Это обеспечивает стабильную работу цифровых устройств, противостоит ложному срабатыванию логических дешифраторов, независимо от уровня сигнала и его качества.

Программируемое устройство для устранения дребезга
Программируемое устройство для устранения дребезга

Заключение

Подытоживая выше сказанное, приходим к выводу: несмотря на несовершенство современных переключателей, мы можем эффективно подавлять дребезг контактов. В зависимости от решаемых задач, существует достаточно способов устранения дребезга. Самые простые из них – аппаратные, с применением низкочастотных фильтров. Очень распространёнными и практичными оказались схемы подавления дребезга с использованием триггеров.

Для управления высокоточными цифровыми устройствами лучше использовать программный метод. Он более дорогой и сложный, но в ряде случаев – безальтернативный.

Видео в развитие темы

.